On the Solution of Linear Ill-posed Problems on the Basis of a Modified Quasioptimality Criterion
نویسندگان
چکیده
We consider solution of linear ill-posed problem Au = f by Tikhonov method and by Lavrentiev method. For increasing the qualification and accuracy of these methods we use extrapolation, taking for the approximate solution linear combination of n ≥ 2 approximations of Tikhonov or Lavrentiev methods with different parameters and with proper coefficients. If the solution u∗ belongs to R((A A)) and instead of f noisy data fδ with ‖fδ − f‖ ≤ δ are available, maximal guaranteed accuracy of Tikhonov and Lavrentiev approximations is O(δ) and O(δ), respectively, versus accuracy O(δ) and O(δ) of corresponding extrapolated approximations. We propose several new rules for a posteriori choice of the regularization parameter, including modifications of the monotone error rule. Extensive numerical experiments show that in case u∗ ∈ R(A ∗) the extrapolated Tikhonov approximation with a posteriori parameter choice (not using any smoothness information) is typically more accurate than Tikhonov approximation with optimal parameter.
منابع مشابه
Ill-Posed and Linear Inverse Problems
In this paper ill-posed linear inverse problems that arises in many applications is considered. The instability of special kind of these problems and it's relation to the kernel, is described. For finding a stable solution to these problems we need some kind of regularization that is presented. The results have been applied for a singular equation.
متن کاملImplementation of Sinc-Galerkin on Parabolic Inverse problem with unknown boundary condition
The determination of an unknown boundary condition, in a nonlinaer inverse diffusion problem is considered. For solving these ill-posed inverse problems, Galerkin method based on Sinc basis functions for space and time will be used. To solve the system of linear equation, a noise is imposed and Tikhonove regularization is applied. By using a sensor located at a point in the domain of $x$, say $...
متن کاملNumerical Solution of a Free Boundary Problem from Heat Transfer by the Second Kind Chebyshev Wavelets
In this paper we reduce a free boundary problem from heat transfer to a weakly Singular Volterra integral equation of the first kind. Since the first kind integral equation is ill posed, and an appropriate method for such ill posed problems is based on wavelets, then we apply the Chebyshev wavelets to solve the integral equation. Numerical implementation of the method is illustrated by two ben...
متن کاملGmres , L - Curves , and Discrete Ill - Posed Problems ∗
The GMRES method is a popular iterative method for the solution of large linear systems of equations with a nonsymmetric nonsingular matrix. This paper discusses application of the GMRES method to the solution of large linear systems of equations that arise from the discretization of linear ill-posed problems. These linear systems are severely ill-conditioned and are referred to as discrete ill...
متن کاملA numerical Algorithm Based on Chebyshev Polynomials for Solving some Inverse Source Problems
In this paper, two inverse problems of determining an unknown source term in a parabolic equation are considered. First, the unknown source term is estimated in the form of a combination of Chebyshev functions. Then, a numerical algorithm based on Chebyshev polynomials is presented for obtaining the solution of the problem. For solving the problem, the operational matrices of int...
متن کامل